

October 24, 2022

Green beginnings for End-of-Life Batteries: The potential of reuse, repair and recycling

Fraunhofer Twin Transition Series

13:00 p.m. Moderation by Verena Fennemann

Head of Fraunhofer EU-Office Brussels

Welcome and introduction by Prof. Dr. rer. nat. Jens Tübke

Fraunhofer Battery Alliance

13:10 p.m. Setting the scene by Malte Gallée

Patron of the webinar; Member of the European Parliament

13:20 p.m. Expert presentation I "The need for a harmonised LCA approach for the battery value chain"

by Prof. Dr.-Ing. Thilo Bein

Fraunhofer Institute for Structural Durability and System Reliability LBF

Expert presentation II "A question of sustainability and raw material independency: Technological

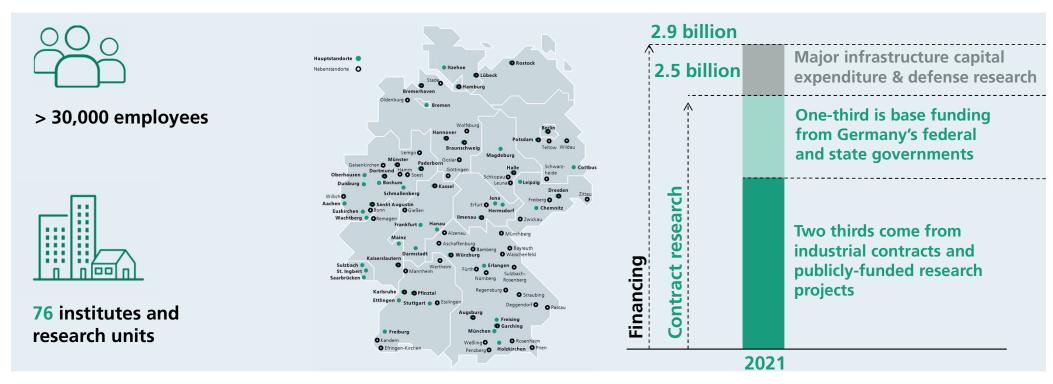
Public information

pathways to recycle critical battery materials" by Dr.-Ing. Mareike Partsch

Fraunhofer Institute for Ceramic Technologies and Systems IKTS

13:45 p.m. Discussion

14:00 p.m. End of the event



The Fraunhofer-Gesellschaft

© Fraunhofer

At a glance

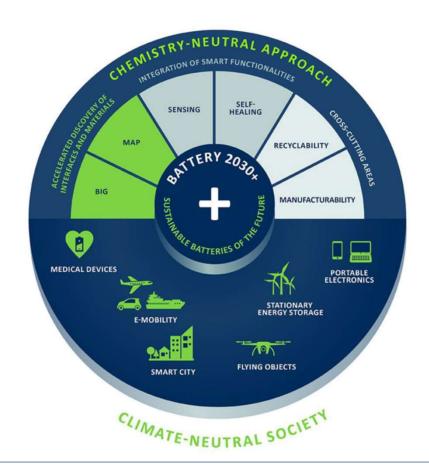
Applied research with a focus on key future-relevant technologies and the commercialization of findings in business and industry. A trailblazer and trendsetter in innovative developments.

Welcome and introduction

Prof. Dr. Jens Tübke

Fraunhofer Battery Alliance

Electrochemical Storage - Batteries


EU Battery2030+

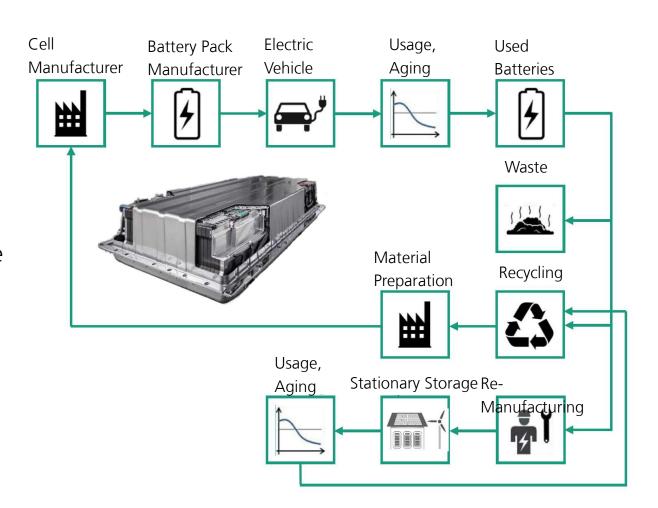
Key facts:

If batteries can be made simultaneously more sustainable, safe, ultra high performing, and affordable, they will be true **enablers**.

Shift towards sustainable and **smart mobility**; supplying clean, affordable and secure **energy**; and mobilizing industry for a clean and circular economy.

Batteries are a key technology for battling carbon dioxide **emissions** from the transport, power, and industry sectors.

24-Oct-22

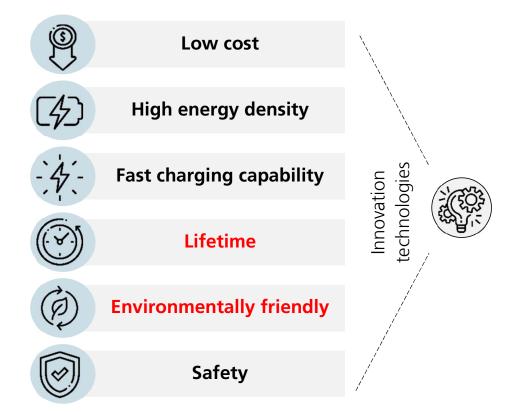

Fraunhofer Battery Research

Reuse– Repair – Recycling?

But

Page 6

To meet the expectations placed on batteries in terms of climate protection and resource conservation, circular value creation is required, from the raw materials to the cell, battery, usage phase and recycled materials.



Public information

Lithium ion batteries State of the art

Development strategies from the perspective of automotive engineering

High nickel-rich cathodes

Particle doping/coating

Silicon based anodes

Advanced materials and specific compositions

Advanced inactive materials

CNTs, Ultra Thin Separators & **Electrolyte Formulations**

Cell design

C2P, Lightweight & Safety Materials

Public information

Solid-state technology

Solid state or hybrid methods with polymer, sulfide or oxide electrolytes

Fraunhofer Battery Research

Battery Alliance

Competence map of Alliance Batteries

Competencies of the 24 member institutes along the entire value chain

Material & Cell

Cell production

System & Integration

Test & Evaluation

Simulation

Recycling & LCA

Markets addressed

Mobile storage
(Electromobility, Heavy Duty, Rail, Aviation)

Stationary storage

Powertools/ Consumer

Fraunhofer Battery Research

Mapping of Fraunhofer battery competencies within the R&I areas in the SRIA

Total of 600 FTE at Fraunhofer working on battery technology development in all SRIA R&I areas

Simulation, development, manufacturing of active materials Li, Na, Mg, Zn, ...

> Manufacturing technologies electrodes, stacks, cells, modules, systems, BMS, ...

piloting EV, industrial, stationary Simulation, monitoring,

Festing and characterization Management

CA of applications and technologies

Area 1 **Raw Materials** and Recycling

Area 2 **Advanced Materials and** Manufacturing

Area 3 **Battery end-uses** and operations

Public information

Area 4 Safety and Reliability

Area 5 **Sustainability**

24-Oct-22

Research management and foresight

Battery Technology Roadmapping at Fraunhofer

- More efficient extraction processes for raw materials
- New ways to extract lithium (e.g. from sea water)
- Novel cell designs: solid-state batteries (SSB)
- Novel chemistries: Na-ion batteries, Zn batteries, etc.
- Improved production technologies (e.g. wet processing with green solvents, dry processing)
- Improvements in packaging design and technologies (e.g. Cell2Pack)
- Improved battery management systems (BMS)

Applications

- Emerging business cases for 2nd life applications
- Battery Passport

Raw Components

Novel chemistries for LIB:

- Anodes: Si-rich anodes; Li metal anodes
- Cathodes: NMCs with higher Ni and Mn contents; NMCAs; LMFPs; sulphur (long term)
- Solid electrolytes -> solid-state batteries
- Components for novel battery chemistries: Na-ion batteries, Zn batteries, etc.
- Strongly increasing demand from BEV and EES

Cells

Public information

- Electrification of further applications, such as trucks (also long haul), short distance planes, ships, etc.
- Improvement and scale-up of existing recycling processes (hydrometallurgical / pyrometallurgical)
- novel recycling processes, e.g. "direct recycling"
- Battery Passport

Recycling

Setting the Scene

Malte Gallée

Member of the European Parliament

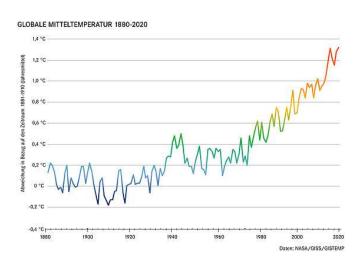
© Fraunhofer

The need for a harmonised LCA approach for the battery value chain

Public information

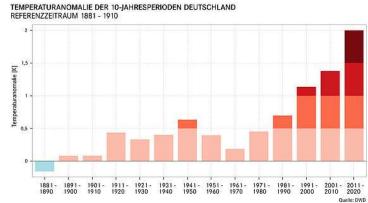
Expert Presentation I

Prof. Dr.-Ing. Thilo Bein


Fraunhofer Institute for Structural Durability and System Reliability LBF

Climate Change

We have to act now

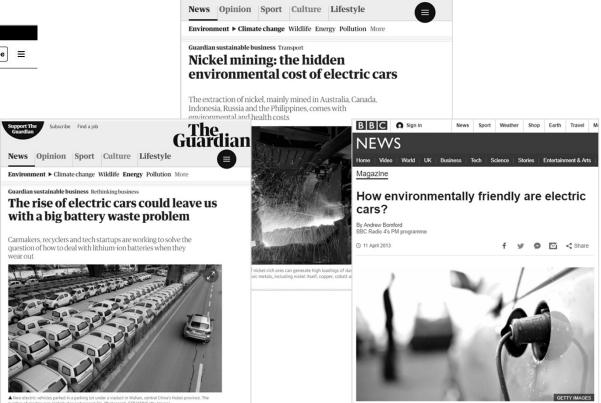

Global warming

- Limiting global temperature rise < 2,0 °C is a global challenge
- More and more weather extremes
 - Heavy rain and floods
 - droughts
 - **Storms**
 - fires

Public information

Source: www.deutsches-klima-konsortium.de

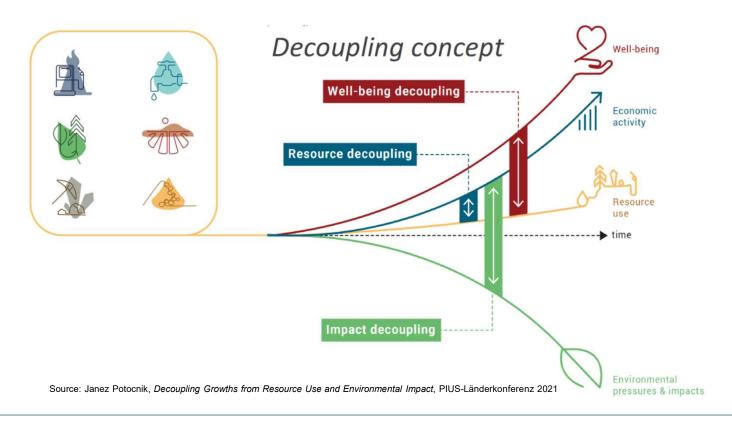
Challenge of future vehicles and systems



Green

EU Lawmakers Uphold Ban on New Combustion Engine Cars by 2035

- EPP wanted emissions cut by 90% instead of 100% from 2035
- Lawmakers also vote against amendment for e-fuels loophole


Subscribe Find a job

Transforming the European Road Transport System

The Decoupling Concept

- Global resource use has more than tripled since 1970
- Global material demand per capita grew from 7.4 tons in 1970 to 12.2 tons per capita in 2017
- Material productivity started to decline around 2000 and has stagnated in the recent years

Challenge of future vehicles and systems (e. g. battery)

The **ecological footprint** of a product over the full lifecycle (cradle to cradle) must be considered and evaluated Life-time / durability / reliability already in the product development process: energy- and GWP-balance EoL-strategies (recycling, re-use,...) costs (Total Cost of Ownership) **Environmental** and must be the basis for the **selection of the right** technology. comfort crashworthiness REUSE REDUCE hazardous substances

Public information

Challenges for a harmonized assessment of the ecological footprint

- Standardised and comparable (real) data are missing.
- Harmonised methods and tools for affordable (in terms of cost and time) and easy-tohandle assessment of the ecological footprint are needed.
- **Strategies and definitions** for consistent circular economy approaches (e.g. categories like share of recovered materials, energy efficiency of recycling process ...) are missing.
- **Knowledge and skills** for LCA and CE are lacking.
- LCA- and circular economy-based solutions are not implemented on a wide scale.
- Communication and acceptance of LCA- and circular economy-based solutions.

Source: 2ZERO SRIA. Cluster 4

Fraunhofer

Research needs for the battery value chain

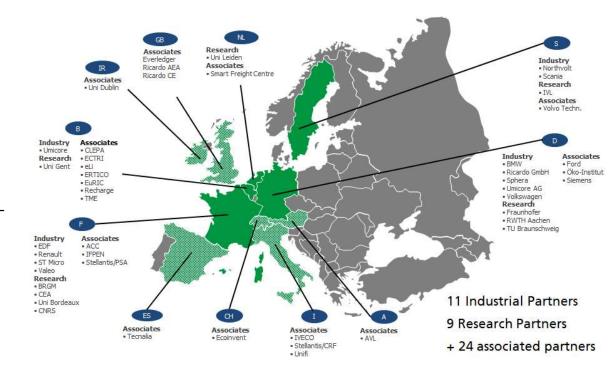
Data for comparable and reliable assessments

- Life-cycle inventory (LCI) data base beyond the batterie pass
- Monitoring of the ecological footprint over lifetime

Methods and Tools

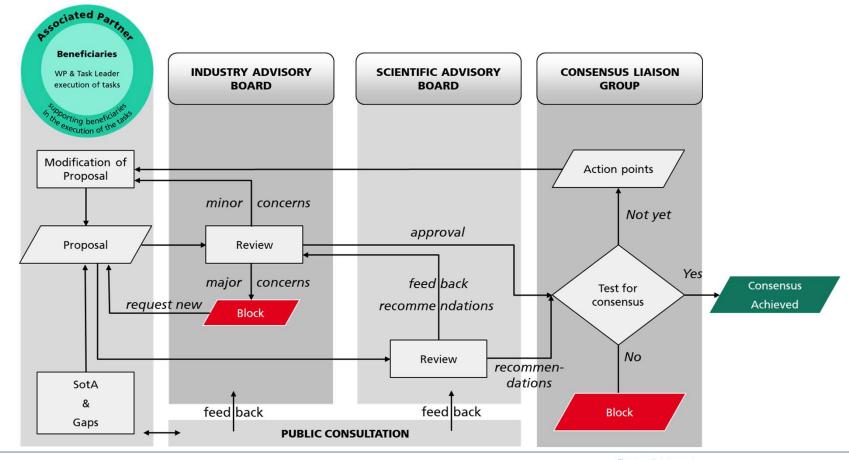
- Methods and tools for LCSA tailored to the battery value chain
- Social LCA for the battery value chain
- Methods, tools and processes for circular economy approach for the battery value chain → Recycling, Re-Use and Repair
- Development of approaches/methods and tools for system-wide life-cycle and CE strategy modelling

Assessment and demonstration


- Assessment of application scenarios
- Development and demonstration of CE strategies for battery value chain

The Coordinated and Support Action (CSA) TranSensus LCA

Commonly accepted and applied single LCA approach for zero-emission road transport and the battery value chain


- Conceptualize and demonstrate a single, Europeanwide real-data LCA approach for zero-emission road transport
- Harmonization of methodologies, tools and datasets
- Elaborate an ontology and framework for a Europeanwide LCI database
- Conceptualize LCI data management and update along the life cycle and along the supply chain
- Upcoming technologies and demands.
- Paving the way for LCA-based product and business development

Page 20 24-Oct-22 © Fraunhofer Public information

Decision Making Process

Page 22 24-Oct-22 © Fraunhofer Public information

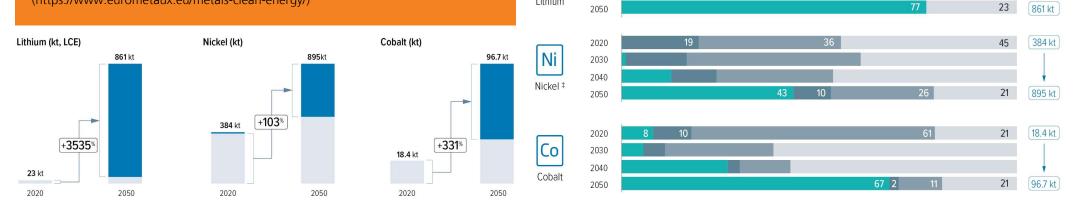
A question of sustainability and raw material independency: Technological pathways to recycle critical battery materials

Public information

Dr.-Ing. Mareike Partsch

Fraunhofer Institute for Ceramic Technologies and Systems **IKTS**

Critical battery materials


Increasing demand and ways to cover that

Significant supplies of nickel, lithium, and cobalt required to cover future scenarios -> Europe will need to develop new recycling capacity

The first generation for electric vehicle batteries will start reaching end-of-life in significant volumes after 2035.

By 2050, recycling can give Europe a major supply source if batteries reach EU recyclers and new recovery technologies are commercialized.

(https://www.eurometaux.eu/metals-clean-energy/)

Public information

Lithium

2020

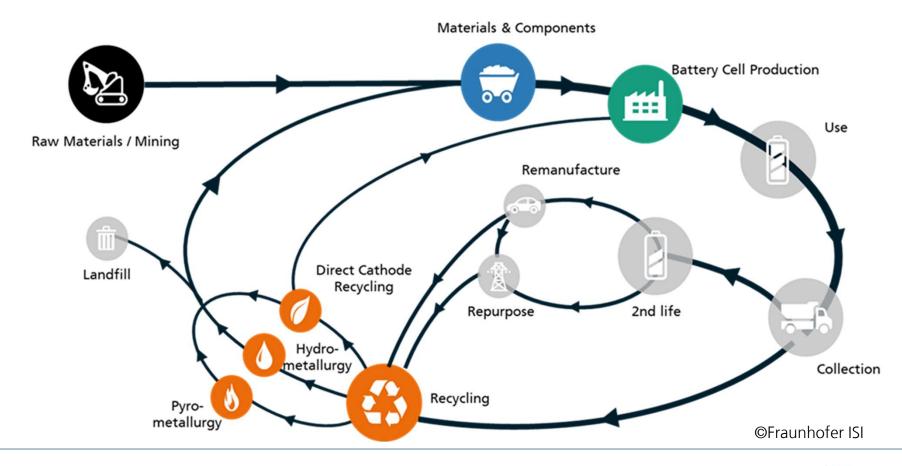
2030

2040

*** This does not represent battery grade lithium, but spodumene destined for the ceramics market ‡ Today nickel is recycled as part of stainless steel but not as pure nickel

Metal from recycling* Metal from domestic ore Metal from imported ore Imported metal

83


23 kt

Battery storage

Top transition uses (all battery metals):

Eficient use of raw material along the whole value chain

Rethink, Reuse, Repair, Recycle

24-Oct-22

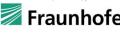
© Fraunhofer

Battery recycling Is the circle really closed? A lot of activity Some activity here here REDUX **GLENCORE** Saubermacher Disassembly Li-Cycle Automation? Testing Where / who? Value of Eo-first-L **@**fortum Mechanical treatment batteries? Hub and spoke scheme Duesenfeld Demand for 2nd life batteries? **Metallurgical treatment** Collection Standardized testing? Black mass Dealer level? Metal salts municipal level? Battery material precursor national level? No coherent recycling chain from EoL application to new battery material **D-BASF** We create chemistry No clarity on viability of business models umicore ©Fraunhofer ISI Incomplete representation

Page 28 24-Oct-22 © Fraunhofer Public information

Disassembly at pack, module and cell level

Key process to efficient recycling



	Recovered parts	Challenges
	ElectronicsCablesModules	 Connector removal No data about battery condition residual charge → safety issues Fire hazard
Disassembly	HousingTerminalsCell	Removal of adhesive between cellssolder jointsModule SoC sometimes unknown
	Li 3 Ni 28 Mn 25 Co 27 PP St. Se. Se. Se. Se. Se. Se. Se. Se. Se. Se	 Good separation of anode and cathode Contamination and mixing of polymer components Gas generation HF (from conducting salt) Changing compositions and materials

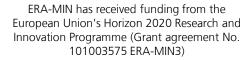
Harper, Gavin; Sommerville, Roberto; Kendrick, Emma; Driscoll, Laura; Slater, Peter; Stolkin, Rustam et al. (2019): Recycling lithium-ion batteries from electric vehicles. In Nature 575 (7781),

Fraunhofer Fraunhofer

© Fraunhofer

RecyLIB

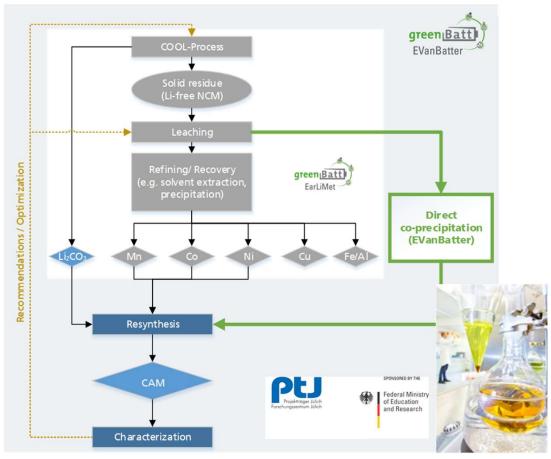
Direct recycling of lithium-ion batteries


RecyLIB aims to establish sustainable, lowenergy and higly efficient manufacturing and recycling chains for lithium-ion batteries

Six partners from 3 countries: Fraunhofer ISC, ImpulsTec GmbH Hutchinson, Ghent University, CEPA, BayFOR

Fraunhofer's contribution

- Cell assembly and testing
- Deagglomeration of black mass
- Material selective separation of black mass
- Regeneration of aged cathode materials



Recycling and Resynthesis of Cathode Materials

How to bring critical raw materials back into the cycle

Fraunhofer's contribution

- Further development and adaptation of hydrometallurgical processes for optimized and cost-efficient recovery of Co, Mn, Ni and Li as priority valuable metals
- Recovery of components such as phosphorus, fluorine, etc.
- Use of membrane separation processes, electrochemical processes, leaching, precipitation, selective adsorption and liquid-liquid extraction,
- Purification and recycling of leaching and other chemicals (leaching chemicals, extraction agents, diluents, precipitants), process water and waste water produced
- Complete material balancing across all scale-up capable sub-processes and cost evaluation
- Investigations on masking/complexation or removal of impurities (Cu, Al, and Fe)

Synopsis

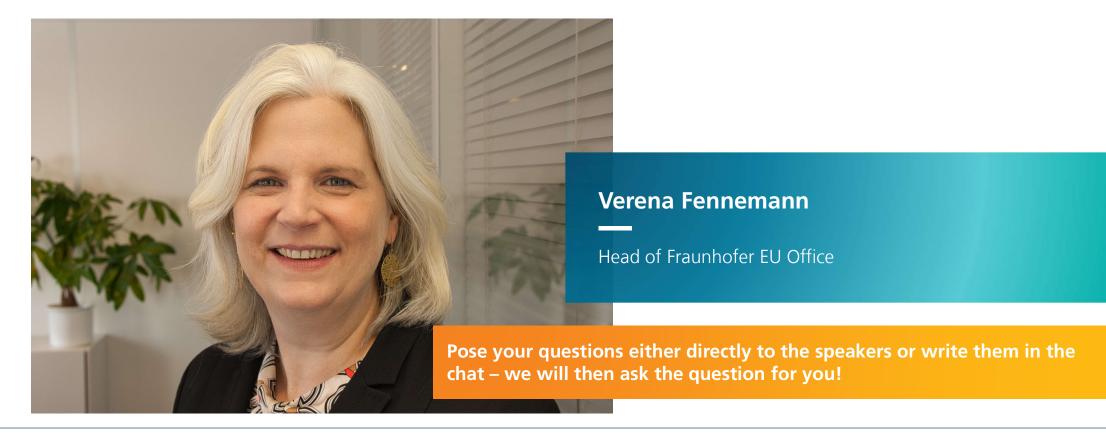
Challenges and policy recommendation

Lithium-ion battery storage is an essential component of a future energy economy

From production to use and recycling: innovative solutions are still needed to save resources and costs --> further need to strengthen research for EoL scenarios of batteries

Circular economy will need legislative as well as political support, motivation and guideline, e.g.

- Implementation of new Battery Directive
- Establish a harmonized standard for LCA and the supporting data
- Provide legal framework that material flows can be retained in Europe

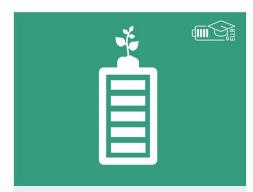

We need to be fast! Recycling is one crucial part for ensuring material basis for future battery manufacturing!

Public information

Discussion

European Learning Lab Battery Cells by Fraunhofer FFB

Webinar series for the battery sector

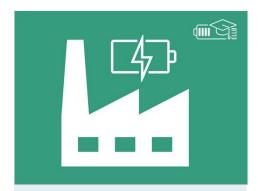


1. European battery ecosystem

Nov 2, 2022 - 3pm

- European battery eco-system
- Pricing
- Key players & resources along the value chain

Registration open!

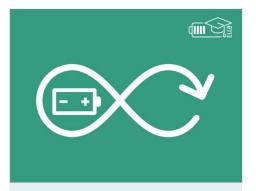


2. Material Cycle of LIB

Nov28, 2022 - 1pm

- Material cycle of LIB
- Challenges in the production process
- Recycled materials

Registration open!



3. Sustainable battery cell production & Digital twin

Jan 3, 2023 - 1pm

- Sustainability
- Innovation
- Problems of classic LIB production
- Use of digital twins

Pre-Registration open!

4. Forecast of the battery value chain

Mar 27, 2023 - 1pm

- **Employment effects**
- Challenges
- Political, strategic, economic and social future perspective

Pre-Registration open!

© Fraunhofer

Fraunhofer Technology Experience

Register now!

For more information and registration: s.fhg.de/techx

Contact information

Prof. Dr. Jens TübkeFraunhofer Battery Alliance

<u>Jens.tuebke@ict.fraunhofer.de</u> www.batterien.fraunhofer.de/en.html

Prof. Dr.-Ing. Thilo BeinFraunhofer Institute for Structural
Durability and System Reliability LBF

thilo.bein@lbf.fraunhofer.de www.lbf.fraunhofer.de/en.html

Dr.-Ing. Mareike PartschFraunhofer Institute for Ceramic Technologies and Systems IKTS

<u>mareike.partsch@ikts.fraunhofer.de</u> www.ikts.fraunhofer.de/en.html

